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Abstract

Three forms of the high-frequency asymptotic Green function for Lilley’s equation are reviewed and
compared to the exact solution over a wide range of Strouhal numbers. The asymmetric approximation,
which applies to sources away from the jet axis, and the quasi-symmetric approximation, which uses a near-
axis source assumption, are both obtained for parallel round jets from a formal Fourier-transform solution.
The latter of the two is the basis of the so-called MGB computer code (High velocity jet noise source
location and reduction, FAA-RD-76-96-II, 1978) and its derivatives. The ray-theory solution, which is the
only high-frequency approximation that can be applied to more general mean flows, follows from a WKB
ansatz and is shown to be closely related to the asymmetric approximation. The comparisons show that the
best overall prediction of the exact Green function is given by the asymmetric approximation which
remains accurate down to a Strouhal number of 1=2: The close relationship between the asymmetric and
ray-theory approximations suggests that the high-frequency asymptotic Green function for more general
mean flows would be similarly successful.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of jet noise has been an area of continuous interest over the last half century and
has become increasingly important in recent years due to stricter noise regulations placed on the
commercial aircraft industry. The need for quieter jet engines has led to several noise abatement
techniques such as the placement of tabs and chevrons at the nozzle exit which alter aerodynamic
sound generation through enhanced mixing. Accurate and robust prediction tools are
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instrumental in the design of more efficient noise-suppression devices. The present paper considers
the applicability of an approximation often made in jet-noise prediction.

Noise generation in jets is generally regarded as a by-product of the unsteady features of the
flow and, in many situations of practical interest, the dominant feature is turbulent mixing. Jet-
mixing noise emanates from both fine-scale turbulence and the unsteady motions of large-scale
coherent structures. The contribution from the latter component is usually most important at
shallow angles off the downstream axis (especially in supersonic jets) and is often successfully
predicted using either an instability-wave-based approach or a large eddy simulation. It is this
noise source that is most directly impacted by mixing enhancement devices since they tend to
breakup the large structures at the expense of creating more fine-scale turbulence.

The present investigation is concerned with the mixing noise due to fine-scale turbulence which
dominates the spectra away from the downstream jet axis. This component is most often analyzed
by employing the acoustic analogy and assuming that the noise generating eddies are compact and
behave as convected acoustic sources. The sound field is then governed by Lilley’s equation which
describes the acoustic propagation on a specified mean flow due to multipole-type sources. The
source distribution is, in general, modelled using appropriate space–time correlation functions.

Solutions to Lilley’s equation are typically constructed by introducing a Green function. This
allows the mean-flow refraction effects to be determined independent of the source distribution
and limits the empiricism inherent in the acoustic analogy to the source modelling problem.
Despite the linear nature of Lilley’s equation, accurate numerical determination of the associated
Green function for an arbitrary mean flow is still a major undertaking [1] and consequently much
attention has been focused on the simplifications to be gained by use of high-frequency
asymptotics [2–4].

The high-frequency limit arises when the acoustic wavelength of the aerodynamic noise is much
shorter than the characteristic length scale of the mean flow. For simple round jets, this is usually
the case within the first several jet diameters downstream of the nozzle exit where the mixing layer
is thin and the turbulence intensity is at its peak. The high-frequency noise can be further
increased by the presence of mixing enhancement devices. As a result, high-frequency asymptotic
approximations to the Green function for Lilley’s equation form the basis of many jet-noise
prediction schemes, eg. the so-called MGB computer code [5] and its derivatives.

For arbitrary mean flows, the high-frequency solution to Lilley’s equation is described in terms
of the ray-theory of acoustics [4]. However, it is often reasonable to assume, for high Reynolds-
number jets of practical interest, that the mean flow is both locally parallel and axisymmetric—
even jets issuing from tab and chevron nozzles are known to become axisymmetric within 4–5
diameters downstream of the nozzle exit. When the locally parallel and axisymmetric assumption
is made, three different closed-form expressions for the high-frequency Green function for Lilley’s
equation are found in the literature. Goldstein [6] developed an approximation for the Green
function by restricting attention to sources located several acoustic wavelengths off the jet axis
and determining the high-frequency asymptotics of the formal Fourier-transform solution. Balsa
[2,5] also obtained an expression for the high-frequency Green function from the formal Fourier-
transform solution but did so by assuming that the source lies near the jet centerline. Finally,
Goldstein [3] presented a closed-form ray-theory solution for parallel round jets.

The goal of limiting the empiricism in jet-noise prediction to the source modelling problem will
be achieved only when the high-frequency asymptotics provide an accurate approximation of the
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exact Lilley’s equation Green function. Adequate agreement between the exact source directivity
and a high-frequency approximation for Strouhal numbers as small as one has been demonstrated
in some limited circumstances by Tester and Morfey [7] for a round jet using a ray-theory solution
at polar angles outside the zone of silence and by Scott [8] for a two-dimensional isothermal flow
with a piecewise constant mean shear. The primary objective of the present paper is to determine
the relative success of the above three high-frequency approximations for parallel round jets by
comparing them to the exact order-one frequency solution over a wide range of Strouhal numbers
and farfield observation angles. In doing so, the relationships between the different solution forms
will be revealed and the potential success of the high-frequency approximation for more general
mean flows will be discussed.

The general problem defining the Lilley’s equation Green function for a uni-directional
transversely sheared mean flow is presented in Section 2 where the formal Fourier-transform
solution available for parallel round jets is given. The high-frequency asymptotic behavior of that
formal solution is considered in Section 3 where the approximations corresponding to the analyses
of Goldstein [6] and Balsa [2,5] are summarized. Appendices A and B provide the details of those
analyses with the former correcting an error in the derivation of Goldstein [6]. A comparison of
the two high-frequency approximations with the exact order-one frequency Green function is
given in Section 4. It is shown there that the best over all prediction of the exact result is provided
by the corrected expression of Goldstein which is referred to here as the asymmetric high-
frequency approximation and which remains accurate down to a Strouhal number of 1/2. The
Balsa expression is referred to as the quasi-symmetric high-frequency approximation and is shown
to be at its best when applied to the ring-source directivity in which case it becomes coincident
with the asymmetric approximation at sufficiently large polar angles off the downstream jet axis.

The ray-theory solution, which is reviewed for a uni-directional transversely sheared mean flow
in Appendix C, is shown to be closely related to the asymmetric high-frequency approximation in
Section 5 where the generalization to complex rays in the zone of silence is also considered. In
Section 6, local modifications to the ray-theory solution near the caustic and branch point are
constructed and a composite solution is presented. The composite ray-theory solution is shown to
provide a good approximation to the asymmetric high-frequency solution over the entire range of
Strouhal numbers considered and from this result it is inferred that the high-frequency
approximation for more general mean flows (i.e., mean flows that are non-axisymmetric and/or
non-parallel) would be reasonably accurate down to Strouhal numbers as small as 1/2.

2. Formulation

Interest here is in the acoustic propagation on a parallel, doubly infinite jet for which an exact
solution to the steady, inviscid, non-heat-conducting equations of motion is given by

u ¼ i %uðy; zÞ; r ¼ %rðy; zÞ; c ¼ %cðy; zÞ; p ¼ constant; ð1Þ

where u; r; c and p are the velocity, density, sound speed and pressure respectively. The Cartesian
co-ordinates x ¼ fx; y; zg are chosen such that x is aligned with the direction of the mean flow and
the unit vector i is in that direction. The mean-flow profiles are required to approach constant
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ambient values,

%u-0; %r- %rN; %c-%cN;

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
-N:

Assuming a calorically perfect ideal gas, the linearized equation governing the acoustic
propagation on Eqs. (1) is [9]

LP ¼
D

Dt

D2

Dt2
� = . %c

2=

� �
Pþ 2%c2= %u .=

@

@x
P ¼ G; ð2Þ

where P denotes the acoustic pressure fluctuation normalized by %r%c2;

D

Dt
�

@

@t
þ %u

@

@x

is the convective derivative relative to the mean flow and t denotes the time. The term G represents
the acoustic source distribution and is given by

G ¼
D

Dt
= . f � 2= %u .

@

@x
f; ð3Þ

when produced by a fluctuating force per unit volume. In the absence of temperature fluctuations,
Lilley’s equation [10] is obtained by replacing f with the quadrupole source distribution f ¼
= . ðv#vÞ where v is the velocity fluctuation relative to the mean flow and # denotes the tensor
product.

Since Eq. (2) is linear, the solution for an arbitrary source distribution can be obtained through
superposition of solutions to

L½GoðxjxsÞe�iot� ¼
D

Dt
½%c2

N
dðx� xsÞe�iot�; ð4Þ

where o is the frequency, xs is the source position, d is the Dirac delta function and Go denotes a
reduced Green function. It is common practice to include the convective derivative D=Dt in the
inhomogeneous term of the reduced Green function equation because doing so simplifies the
subsequent computation of the acoustic field when attention is restricted to the first term in
Eq. (3)—the so-called self-noise term. It should be noted however that use of Eq. (4) does not limit
the form of G since the reduced Green function Go corresponding to the right-hand side,

%c
2
N
dðx� xsÞe�iot;

is related to Go by

GoðxjxsÞ ¼ � ioþ %us
@

@xs

� �
GoðxjxsÞ; ð5Þ

where the subscript s denotes evaluation at the source position.
When the mean flow depends only on the radial co-ordinate in the y–z plane r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
; a

formal solution for Go can be obtained by reducing Eq. (4) to a system of linear ordinary
differential equations. Following Goldstein [6], the reduced Green function is written as

GoðxjxsÞ ¼
1

4p2

XþN

n¼�N

einðj�jsÞ
Z þN

�N

Gnðrjrs;o; k1Þe�ik1ðx�xsÞ dk1; ð6Þ
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where j � arctanðz=yÞ is the azimuthal angle in the y–z plane. The Fourier coefficients Gn are
determined by

F2

r

d

dr

r

F2

d

dr
Gn

� �
þ k2

0ðF
2 � k2Þ �

n2

r2

� �
Gn ¼ �

dðr � rsÞ
ra2

; ð7Þ

where F � ð1 þ kMÞ=a; k0 � o=%cN; k � k1=k0; a � %c=%cN is the local sound speed normalized by
its ambient value and M � %u=%cN is the local Mach number based on the ambient speed of sound.

Eq. (7) must be solved subject to the conditions that Gn remains bounded at r ¼ 0 and behaves
like an outgoing wave as r-N: The solution satisfying these conditions can be expressed in terms
of two linearly independent homogeneous solutions to Eq. (7), say w1 and w2; as follows [11]:

Gnðrjrs;o; k1Þ ¼
w1ðrjkÞw2ðrsjkÞ

rsa2
s W ðrsjkÞ

for r > rs; ð8Þ

where

W ðrjkÞ � w1ðrjkÞw0
2ðrjkÞ � w0

1ðrjkÞw2ðrjkÞ

is the Wronskian, a prime denotes differentiation with respect to r and the wj have been chosen
such that

w1-constant  r�1=2eik0

ffiffiffiffiffiffiffiffi
1�k2

p
r as r-N; ð9Þ

w2-constant  rjnj as r-0: ð10Þ

Only the r > rs form of Gn is given since primary interest is in the behavior of the solution in the
far field.

The homogeneous solutions wj must be determined numerically in general. However, when the
frequency is sufficiently large, the equations become simple enough to be solved analytically.

3. High-frequency, farfield approximation

The high-frequency limit describes the situation wherein the wavelength of the acoustic field,
1=k0 ¼ %cN=o; is much shorter than the characteristic length scale of the mean flow, viz. the jet
radius

rJ �
1

MJ

Z
N

0

%uðrÞ
%cðrÞ

dr ¼
1

MJ

Z
N

0

MðrÞ
aðrÞ

dr; ð11Þ

where MJ is a jet Mach number which is taken here to be the ratio of the axial velocity to the local

speed of sound at the jet centerline. The streamwise wavelength 1=k1 scales like 1=k0 in the present
analysis and the high-frequency limit can therefore be expressed mathematically as

o
%cN

¼ k0-N; with
k1

k0
¼ k ¼ Oð1Þ;

where it has been assumed, for simplicity, that the mean-flow quantities M; a and rJ are all order
one.
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In many technological applications, one is only interested in the behavior of the acoustic field at
remote distances (in terms of the characteristic mean-flow length scale) from the aerodynamic
noise sources. The so-called farfield behavior is most conveniently expressed by introducing polar
co-ordinates in the x–r plane,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xsÞ

2 þ ðr � rsÞ
2

q
; y ¼ arccos

x � xs

R


 �
;

with origin at the source position, and considering the limit as R-N:
Using Eq. (9), it can be shown that the integrand in Eq. (6) has a point of stationary phase at

k ¼ �cos yþ OðR�1Þ;

as R-N: The integral over k1 can then be approximated using the method of stationary phase
[11] with the result thatZ þN

�N

Gnðrjrs;o; k1Þe�ik1ðx�xsÞdk1

B
2pk0 sin2y

iR

� �1
2w1ðrj � cos yÞw2ðrsj � cos yÞ

rsa2
s W ðrsj � cos yÞ

eik0R cos2 y ð12Þ

as k0;R-N:
The asymptotic approximation for Go is completed by determining the high-frequency behavior

of w1 and w2: To facilitate this, new dependent variables v1 and v2 are introduced as follows:

wjðrj � cos yÞ ¼
FðrÞffiffi

r
p vjðrÞ for j ¼ 1; 2;

where now F ¼ ð1 � M cos yÞ=a: Substituting into Eqs. (7), (9) and (10) shows that the vj must
satisfy

v00 þ ðk2
0Q2

n þSÞv ¼ 0 ð13Þ

subject to

v1-constant  eik0r sin y as r-N; ð14Þ

v2-constant  r1=2þjnj as r-0; ð15Þ

where

rQnðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2q2 � ðn=k0Þ

2
q

; qðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � cos2 y

p
; ð16Þ

SðrÞ �
F
r

rF0

F2

� �0

þ
1

2r

� �2

; ð17Þ

and the square roots in Eq. (16) are chosen such that they have positive imaginary parts for
negative arguments. Introducing v1 and v2 into Eq. (12) and the result into Eq. (6) leads to

GoðxjxsÞB
GoðxjxsÞRoðxjxsÞ
asð1 � Mscos yÞ

; ð18Þ
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as k0;R-N; where

GoðxjxsÞ �
eik0R

4pR
; ð19Þ

corresponds to the reduced free-space Green function when both the source and farfield
observation points lie in the same azimuthal plane,

RoðxjxsÞ �
XþN

n¼�N

2k0sin y
iprs

� �1=2
v1ðrÞv2ðrsÞ

V
einDj�ik0Rsin2 y; ð20Þ

Dj � j� js and V � v1v02 � v01v2 is the Wronskian which, in view of Eq. (13), is independent of r:
Before the high-frequency asymptotic solutions to Eq. (13) can be constructed, the scaling of

the azimuthal wavenumber n with k0 must be considered. The summation in Eq. (20) suggests the
need for uniformly valid approximations to v1 and v2 for all n: However, the dominant behavior of
Go in the limit as k0-N is determined by a relatively small number of azimuthal modes centered
about a critical value of n and it suffices to construct asymptotic solutions to Eq. (13) based on the
k0 scaling of that critical value.

When the distance between the source and jet axis is sufficiently large (i.e., several factors of
1=k0), the resulting acoustic field is asymmetric and the critical azimuthal wavenumber behaves
like the streamwise wavenumber and scales with k0: This scaling was considered by Goldstein [6]
and will be referred to as the asymmetric, high-frequency approximation. As the source moves
closer to the jet axis the acoustic field becomes increasingly symmetric and eventually the critical
value of n scales like 1=rJ : The near-axis source problem was analyzed by Balsa [2,5] and will be
referred to here as the quasi-symmetric, high-frequency approximation.

Solutions to Eq. (13) using the asymmetric, high-frequency scaling,

n ¼ Oðk0Þ as k0-N;

were constructed by Goldstein [6], however, the bounded solution used in that analysis (Eq. (6.61)
of Ref. [6]) needs correction. The correct asymptotic solutions for v1 and v2 are given in Appendix
A. Using those results in Eq. (20) leads to

RoB
XþN

n¼�N

2

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZnðrsÞ

p
rsQnðrsÞ

" #1=2

Ai½ZnðrsÞ�einDjþik0ðzn�R sin2 yÞ; ð21Þ

as k0; R-N; where

ZnðrÞ � �
3

2
k0znðrÞ

� �2=3

; znðrÞ �
Z r

rd

QnðrÞ dr; Q2
nðrdÞ ¼ 0;

Ai denotes the Airy function and the cube root in the definition of Zn is taken such that Znw0 for
r_rd: Notice that the outgoing-wave solution v1 and the Wronskian V have been replaced by their
high-frequency, farfield approximations in arriving at Eq. (21). The evaluation of the summands is
then reduced to determining the bounded solution v2 at the source position which can be done
either analytically as in Eq. (21) or numerically by integrating Eq. (13) from r-0 to r ¼ rs subject
to initial conditions derived from Eq. (15) and the normalizations (A.2) and (A.3).
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Solutions to Eq. (13) using the quasi-symmetric, high-frequency scaling,

n ¼ Oð1Þ as k0-N;

are given in Appendix B. Substituting Eqs. (B.5) into (20) yields

RoB
XþN

n¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i1
2
pk0x

q
Hð1Þ

n ðk0xÞJnðk0xsÞe
inDj�ik0R sin2 y; ð22Þ

as k0; R-N; where

xðrÞ �
Z r

0

qðrÞ dr ¼ z0ðrÞ � z0ð0Þ;

Hð1Þ
n and Jn denote the Hankel and Bessel functions of the first kind, respectively, and the quantity

under the square root has been simplified by making the approximation xsErsqs which was also
used in Ref. [5] and becomes increasingly accurate as rs-0:

One advantage of the quasi-symmetric approximation is that the sum over n in Eq. (22) can be
evaluated in closed form. Using Graf’s addition theorem [12], one can writeXþN

n¼�N

Hð1Þ
n ðk0xÞJnðk0xsÞe

inDj ¼ H
ð1Þ
0 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2

s � 2xxs cosDj
q� �

;

which, when substituted into Eq. (22), leads to

RoBeik0ðx�Rsin2 y�xs cos DjÞ; ð23Þ

as k0; R-N; where H
ð1Þ
0 has been replaced by its large argument behavior since x-N in the limit

R-N:

4. Comparison of exact and asymptotic solutions

Comparisons of the high-frequency, farfield approximations to the exact solution for the
reduced Green function are most easily carried out in terms of Go: It follows from Eqs. (5) and
(18) that

GoðxjxsÞB
iGoðxjxsÞ

oð1 � Ms cos yÞ
B

iGoðxjxsÞRoðxjxsÞ

oasð1 � Ms cos yÞ2
; ð24Þ

as k0;R-N; where Ro is given by Eqs. (21) or (23) for the asymmetric or quasi-symmetric
approximation respectively. The exact solution for Go is obtained numerically using the adjoint
Green function scheme given by Tam and Auriault [13]. The interested reader is referred to that
reference for the details.

The mean-flow Mach number profile used in the comparisons is

%uðrÞ
%cðrÞ

¼
MðrÞ
aðrÞ

¼ MJsech
2ð2rÞ; ð25Þ

and it follows from Eq. (11) that the jet radius rJ ¼ 1=2: The profile is shown in Fig. 1 for a jet
Mach number MJ ¼ 0:9:
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Two different profiles are considered for the sound speed ratio a: The first corresponds to an
isothermal jet which, in view of the ideal-gas result

%c ¼
ffiffiffiffiffiffiffiffiffiffi
gRT

p
; ð26Þ

has a constant speed of sound and therefore

aðrÞ ¼ 1; ð27Þ

where g is the ratio of specific heats, R is the gas constant and T is the mean static temperature.
The second profile is obtained from Eq. (26) and the Crocco–Busemann law and is given by

a2ðrÞ ¼ 1 þ 1 þ
g� 1

2
M2

J

� �1=2
TR � 1

MJ

ffiffiffiffiffiffi
TR

p MðrÞ �
g� 1

2
M2ðrÞ; ð28Þ

where

TR � 1 þ
g� 1

2
M2

J

� �
TJ

TN

is the ratio of the stagnation temperature at the jet centerline to the ambient temperature. In the
results presented here, g ¼ 1:4; R ¼ 287:06 J=kg K and TN ¼ 290 K: The a profile obtained from
Eqs. (25) and (28) with MJ ¼ 0:9 and TR ¼ 3 is shown in Fig. 1.

In deriving the asymmetric, high-frequency approximation (21), it was assumed (see Appendix
A) that, for each order-k0 value of n; Eq. (13) has one simple turning point rd corresponding to a
zero of Q2

n: Fig. 2(a) is a plot of r2q2 for various polar angles y using Eqs. (25) and (27) with
MJ ¼ 0:9: Similar curves are obtained for hot jets with a given by Eq. (28). Since the zeroes of Q2

n

are determined by solutions to

r2q2 ¼ ðn=k0Þ
2; ð29Þ
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Fig. 2(a) shows that the turning-point assumption made in Appendix A holds for 0�oyp150�

provided n=k0a0: For y > 150�; multiple turning points are possible for certain values of n=k0:
This behavior can be accounted for by making appropriate modifications to the analysis in
Appendix A; however, these upstream angles are usually of no practical interest and will not be
considered here.

The curves in Fig. 2(a) show that the turning-point assumption of Appendix A is violated when
n ¼ 0 and y\58� in which case Eq. (29) has no real solution for rd (see also Fig. 2(b)). Since the
azimuthal wavenumber scaling n ¼ Oðk0Þ clearly does not apply to the n ¼ 0 term in Eq. (20), it
would seem that this term must be evaluated using the n ¼ Oð1Þ scaling of the quasi-symmetric
approximation. However, if the convention that rd ¼ 0 when Q2

n has no zeroes is adopted (as is
done for rs in Appendix B), Eqs. (A.4) and (B.5) can be shown to agree at n ¼ 0 by simply
replacing the functions Ai, H

ð1Þ
0 and J0 appearing in these expressions by their large argument

behaviors. The same proof also applies when Q2
0 has a zero provided the simplifying assumption

rd � rsck
�2=3
0 of Appendix B is made. It therefore follows that the results of Appendix A remain

valid even when n ¼ 0:
The quasi-symmetric analysis of Appendix B is based on the assumption that Eq. (B.2)

has at most one simple turning point rs corresponding to a zero of q2: Fig. 2(b) is a plot of
q2 for various angles y and the same isothermal mean-flow profiles used in part (a). Again,
similar curves were found for heated jets. It is clear from the figure that q2 has one simple
zero for 0�oyt58� and none for y\58�: At yE58�; q2 has a higher order zero at r ¼ 0
which was not accounted for in the analysis of Appendix B. The effect of this omission is
highly localized and, apart from a small neighborhood of yE58�; the turning point
assumption of Appendix B is satisfied for the entire range of polar angles considered
here.
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4.1. Point-source results

When comparing the exact and asymptotic solutions for Go; it is convenient to work in terms of
the ratio Go=Go since this quantity becomes independent of the radial parameter R in the high-
frequency, farfield limit. Figs. 3–6 show jGo=Goj as a function of the polar angle y for various
values of the Strouhal number,

St �
o
2p

2rJ

%cNað0ÞMJ

¼
k0

p
rJ

að0ÞMJ

:

Parts (a–d) of each figure correspond to azimuthal-angle parameters Dj of 0�; 30�; 90� and 120�:
The asymmetric and quasi-symmetric approximations are indicated by the solid and dashed lines,
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respectively, and the symbols correspond to the exact solution. The asymmetric approximation
given by Eq. (21) was evaluated by summing the convergent series in the azimuthal wavenumber n

from �N to þN where N varied from 11 at St ¼ 2 down to 4 at St ¼ 0:25: The results in Figs. 3–6
were computed for a point source at rs ¼ 0:75 using a mean flow given by Eqs. (25) and (27) with
MJ ¼ 0:9:

Fig. 3 shows excellent agreement between the asymmetric approximation and the exact result
for all Dj: The level of agreement tends to diminish as St decreases but remains fairly good down
to St ¼ 0:5; cf. Fig. 5. At the smallest Strouhal number (cf. Fig. 6), the asymmetric
approximation, although no longer in good quantitative agreement, does still correctly predict
the trends of the exact solution—a peak near y ¼ 60� with a steep drop off for yo60� and a more
gradual decline for y > 60�:

Figs. 3–6 show that, at y ¼ 90�; both the asymmetric and quasi-symmetric approximations
remain in near perfect agreement with the exact solution for all St: At y ¼ 90�; the mean-flow
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refraction effects for an isothermal jet vanish as can be readily verified from the expression for F:
It is interesting to note that this exceptional case is captured equally well by both high-frequency
approximations despite their differences in assumed azimuthal wavenumber scaling.

Considering the quasi-symmetric approximation, the most striking feature revealed by Figs. 3–6
is the failure to predict the oscillatory behavior of the exact solution in the range 30�oyo60�:
This is due in large part to the assumption introduced in reference [2] (and used in Appendix B)
that the no-turning-point form of Go adequately approximates the Green function when rs >
rs > 0: It can be seen from Fig. 2(b) that Eq. (B.2) has a turning point that lies between the source
position rs ¼ 0:75 and the jet axis when 30�oyo60�: By neglecting the turning point, the quasi-
symmetric approximation does not allow for ray-interference effects which are primarily
responsible for the oscillations in the exact solution (cf. Section 6).

The figures also show that, in the range yo30�; the quasi-symmetric approximation tends to
over predict jGo=Goj when Djo90� and under predicts this quantity when Dj > 90�: For y > 60�;
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the agreement between the quasi-symmetric approximation and the exact solution actually
improves as St decreases. This surprising behavior, which was also noted by Balsa [2], is probably
due to the increase in acoustic length scale with decreasing Strouhal number which, for a fixed
source position, makes the solution appear more axisymmetric. It should also be noted that the
ray-interference effects near y ¼ 60� diminish as St decreases and this too improves the agreement
with the exact solution.

When modelling the acoustic-source distribution G for use in a noise prediction scheme, it is
usual to assume that the sources are sufficiently compact so that only the absolute value of Go

appears in the resulting formulae. Nevertheless, it may be of some interest to see how well the
high-frequency, farfield approximations predict the phase of Go=Go: This quantity is plotted in
Fig. 7 at St ¼ 1 for various Dj and the same mean flow used for Figs. 3–6. The curves show that
overall the asymmetric approximation is better than the quasi-symmetric approximation at
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predicting the exact result. The quasi-symmetric approximation is at its best when Djo90� and
y > 45�:

4.2. Ring-source results

In the case of round jets, it is often also assumed that the strength and orientation of the sound
sources that make up G are independent of the azimuthal angle. The sound field emitted by such a
source distribution is then axisymmetric and, at fixed axial and radial positions, can be
characterized by a ring-source directivity factor which is defined here as

D �
Z þp

�p

Go

Go

����
����
2

djs;B
1

o2a2
s ð1 � Mscos yÞ4

Z þp

�p
jRoj2 djs;
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as k0;R-N: It follows from Eq. (21) that

Z þp

�p
jRoj

2 djsB
4p
k0

XþN

n¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZnðrsÞ

p
rsQnðrsÞ

Ai2½ZnðrsÞ�; ð30Þ

for the asymmetric approximation, and from Eq. (23) thatZ þp

�p
jRoj

2 djsB2pe�2k0 Im xsI0ð2k0 Im xsÞE2pe�2k0 Imðxs�xsÞ; ð31Þ

for the quasi-symmetric approximation, as k0;R-N; where I0 denotes the modified Bessel
function of the first kind and zeroth order and a subscript s indicates evaluation at the turning
point r ¼ rs: The approximation introduced on the far right-hand side of Eq. (31) corresponds to
a leading-order composite expansion for the ring-source directivity and puts the quasi-symmetric
approximation in agreement with the relation used in the so-called MGB computer code of
Ref. [5].

The ring-source directivity factor is plotted as a function of polar angle y in Figs. 8–11 for
Strouhal numbers St ¼ 2; 1; 0:5 and 0:25: Parts (a) and (b) of each figure correspond to the mean
flow given by Eqs. (25) and (27) with MJ ¼ 0:9 but differing source positions, rs ¼ 0:5 and 0:75
respectively. Similarly, parts (c) and (d) show results at rs ¼ 0:5 and 0:75; respectively, for the
heated jet given by Eqs. (25) and (28) with MJ ¼ 0:9 and TR ¼ 3:

The figures show that the agreement between the asymmetric approximation and the exact
result is excellent at St ¼ 2 and remains good down to St ¼ 0:5: Even at St ¼ 0:25; the
approximation does a fair job at predicting the exact result for y > 60� which corresponds to the
range where the jet noise is dominated by fine-scale turbulence in many technological
applications. At the two largest Strouhal numbers, the level of agreement shows no sensitivity
to changes in the source radius or mean-flow temperature profile. A sensitivity to the source
radius becomes apparent at the two lowest St but only in the range yo60�: This may indicate an
increased importance of the n ¼ 0 term in Eq. (30) as the source moves toward the jet centerline.

The agreement between the quasi-symmetric approximation and the exact solution is best when
y > 60� regardless of St: In this range, the quasi-symmetric and asymmetric ring-source
approximations are nearly coincident—a result that is not simply fortuitous. By approximating
the sum in Eq. (30) with a Riemann integral [11] and then determining the large-k0 behavior of
that integral assuming the dominant contribution comes from the range where rs � rdck

�2=3
0 ; it

can be shown that the right-hand side of Eq. (30) approaches 2p as k0-N in exact agreement
with the quasi-symmetric approximation (31).

For yo60�; the quasi-symmetric approximation is never very good, primarily because of a
consistent under prediction of the y at which D is a maximum. This may indicate the increased
importance of asymmetric effects when the Green function problem possesses a turning point. A
conjecture that is supported by the worsening agreement in the downstream range yo90� for the
heated jet which, it turns out, has a broader range of y where a turning point arises. The
agreement between the quasi-symmetric and asymmetric approximations observed for y > 60� is
absent at small y due to a difference in respective amplitude functions. When y is such that the
dominant contribution to the Riemann-integral approximation comes from the range where
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rd � rsck
�2=3
0 ; the right-hand side of Eq. (30) becomes

�
k0

p

Z rs

rs

r2
s q2

s

r2
ffiffiffiffiffiffiffiffiffi
�q2

p dr

" #�1=2

e�2k0Imðxs�xsÞ

as k0-N: The above result is only accurate for yo20� and becomes unbounded when y is such
that q2

s vanishes. An analogous breakdown occurs in the amplitude function obtained from ray
theory and is considered in more detail in Section 6.
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5. Connection to ray theory

The comparisons of the previous section show that, for parallel round jets, the asymmetric,
high-frequency approximation is in good agreement with the exact Lilley’s equation Green
function over a wide range of Strouhal numbers. One would like to demonstrate a similar level of
agreement between the exact and high-frequency asymptotic solutions for more general mean
flows. Unfortunately, when the mean flow is neither axisymmetric nor parallel, the problem
governing the acoustic propagation can no longer be reduced to a system of linear ordinary
differential equations by Fourier analysis and an asymptotic analysis of the type described in
Section 3 is no longer possible. Nevertheless, analytic progress can still be made for more general
mean flows by considering the high-frequency limit. The corresponding asymptotic solutions are
then described in terms of the ray theory of acoustics [3,4].
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The ray-theory solution of Eq. (4) for the uni-directional transversely sheared mean flow (1) is
summarized in Appendix C. The connection between the approximation (C.18) and those
presented in Section 3 is revealed by specializing the former result to an axisymmetric mean flow
as done by Goldstein [3]. Introducing the mean-flow profiles MðrÞ and aðrÞ into Eq. (C.19) shows
that rsðjÞ is constant along each ray. If Eqs. (C.11) and (C.12) are then used to eliminate yN in
favor of y in the remaining equations, they become, to the required order of accuracy,

’r ¼ 7 Qðrjn%Þ þ
RN � R

R
cos y cot y

� �
; r2 ’j ¼ n%;

’S> ¼ n% ’jþ Q2ðrjn%Þ � sin2 y;

9>=
>; ð32Þ

which must be solved subject to

r ¼ rs; j ¼ js; S> ¼ 0
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at t ¼ 0; where n% � rsqssinðl� jsÞ ¼ rsðjÞ;

rQðrjn%Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2q2 � n2

%

q
; ð33Þ

a dot denotes differentiation with respect to the ray parameter t and use has been made of
Eq. (C.16) in arriving at the definition of n%: The order 1=R term in the ’r equation is retained
because it leads to an order-one contribution in the farfield behavior of S>: The branch cuts of Q
are specified below. For the present, attention will be restricted to the case where n% is purely real
which, it turns out, implies Q2

X0 along the rays. A necessary (but not sufficient) condition for n%
to be purely real is that the source be located such that q2

sX0:
The choice of sign in the ’r equation of Eqs. (32) is a function of the initial condition,

’r ¼ qs cosðl� jsÞ at t ¼ 0;
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as well as the number of zeroes of Q encountered along a ray trajectory rðtÞ: It is assumed here (in
agreement with the turning-point assumptions made in Appendices A and B) that rQ is a
monotonically increasing function of r with at most one simple zero. rQ will then be non-zero and
r will increase monotonically with t for rays initially directed away from the jet centerline, i.e.,
�p=2ol� jsop=2: These solutions, for which the positive sign in Eqs. (32) applies, will be
referred to as direct rays. For rays initially directed toward the jet centerline, i.e. p=2ol�
jso3p=2; but which eventually reach the farfield, r initially decreases with increasing t until r ¼ rd
where Q vanishes. Once this occurs, r begins to increase with t and the sign in Eqs. (32) must
change from negative to positive. These solutions will be referred to as indirect rays.

In view of the preceding discussion, the solutions to Eqs. (32) can be written as

Dj ¼ j� js ¼
Z

N

rd

8

Z rs

rd

� �
n% dr

r2Qðrjn%Þ
; ð34Þ

S> ¼ n%Djþ zðrjn%Þ8zðrsjn%Þ � R sin2 y� RN þ R; ð35Þ

where

zðrjn%Þ �
Z r

rd

Qðrjn%Þ dr; Q2ðrdjn%Þ ¼ 0; ð36Þ

and the upper (lower) signs in Eqs. (34) and (35) apply to the direct (indirect) rays. Notice that rd
cancels out of both the Dj and S> solutions when the upper set of signs is chosen. Substituting
these results into Eq. (C.18) yields

RoB 7rsQðrsjn%Þ
@j
@n%

� ��1=2

eik0½n%Djþzðrjn%Þ8zðrsjn%Þ�Rsin2 y� ð37Þ

as k0;R-N; where dn% ¼ 7rsQðrsjn%Þ dl follows from the definition of n%:
Since the results of Appendix C implicitly assume an acoustic field of order 1=k0 length scale in

all directions, a close connection between Eq. (37) and the asymmetric approximation (21) is
expected. An explicit demonstration of that connection may seem unnecessary in light of the
leading order, large-k0 approximation of the asymmetric ring-source directivity described in the
preceding section. However, like the ring-source approximation, Eq. (37) becomes unbounded
whenever y and Dj are such that the bracketed quantity vanishes and the formalism introduced in
demonstrating the connection between Eqs. (21) and (37) provides the mathematical apparatus
needed to overcome this breakdown.

The Poisson sum formula [14] is used to rewrite Eq. (21) as

RoB
XþN

m¼�N

Z þN

�N

2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZðrsjnÞ

p
rsQðrsjnÞ

" #1=2

Ai½ZðrsjnÞ�eik0½amnþzðrjnÞ�R sin2 y� dn; ð38Þ

as k0;R-N; where am � Djþ 2pm;

ZðrjnÞ � �
3

2
k0zðrjnÞ

� �2=3

;

and QðrjnÞ and zðrjnÞ are given by Eqs. (33) and (36) with n% replaced by n:
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Since the argument of the square root in Eq. (33) can now be negative (or even complex when
the n integration of Eq. (38) is performed in the complex plane), the branch cuts of Q must be
made explicit. In the present context, it is clear that Q is simply a generalization of the function Qn

defined by Eq. (16) where the square root was chosen so that it has a positive imaginary part for
negative (real) arguments. The appropriate generalization of this choice to arbitrary values of n is

rQðrjnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2q2 � n2j

p
ei½argðrq�nÞþargðrqþnÞ�=2 with � 1

2
ppargðrq7nÞo3

2
p: ð39Þ

The branch cuts of QðrsjnÞ in the complex n plane are shown in Fig. 12. It is worth noting here that

lim
n2-r2

s q2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZðrsjnÞ

p
rsQðrsjnÞ

¼ ½k0PðrsÞ�1=3;

where PðrÞ � 1=rðr2q2Þ0; which shows that the integrand in Eq. (38) remains bounded at the
branch points of QðrsjnÞ:

The integral in Eq. (38) is evaluated asymptotically in the limit k0-N using the method of
steepest descents [11] which requires making the k0 dependence of the integrand explicit. The Airy
function Ai can be replaced with its large argument behavior along the entire real n axis except in
the small order k

�2=3
0 neighborhoods of the branch points 7rsqs: Thus

RoB
Rð�Þ

o � iRðþÞ
o þRðÞ

o for q2
s > 0;

Rð�Þ
o for q2

so0

(
ð40Þ
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as k0;R-N; where

Rð8Þ
o �

XþN

m¼�N

Z
Cð8Þ

ik0

2prsQðrsjnÞ

� �1=2

eik0½amnþzðrjnÞ8zðrsjnÞ�R sin2 y� dn; ð41Þ

and RðÞ
o is given by the right-hand side of Eq. (38) but with the integration done over the contour

CðÞ: The contours Cð�Þ; CðþÞ and CðÞ are shown in Fig. 12.
For the present, it will be supposed that the dominant behavior of Eq. (38) is not determined by

RðÞ
o : This exceptional case is considered in the following section. Applying the method of steepest

descents to Eq. (41) yields

Rð8Þ
o B

X
n%

rsQðrsjn%Þ
@c
@n%

����
����

� ��1=2

eiðbþp=4Þeik0½am%
n%þzðrjn%Þ8zðrsjn%Þ�R sin2 y�; ð42Þ

as k0-N; where

�1
2
pob � �arg ði@c=@n%Þ1=2

h i
p1

2
p;

m% and n% are determined by the saddle-point condition

am%
¼ Djþ 2pm% ¼ cðn%Þ �

Z
N

rd

8

Z rs

rd

� �
n% dr

r2Qðrjn%Þ
; ð43Þ

and the % subscript is reused in order to emphasize the connection with the ray-theory solution.
It is immediately evident that the ray solution (34) and the saddle-point condition (43) are

merely different versions of the same relation. The latter result determines n% as a, possibly multi-
valued, function of Dj: Multiple solutions for n% at a fixed Dj are accounted for by the
summation in Eq. (42) and indicate different rays reaching the same farfield observation point.
The ray solution (34) determines Dj as a single-valued function of n% so no special treatment is
needed for rays that reach the same farfield position. The 2pm% factor in Eq. (43) allows for the
possibility that c falls outside the range ½�p;þp�:

Eqs. (34) and (43) also imply that @c=@n% ¼ @j=@n%: If n% is purely real as assumed when
deriving Eq. (37), c is also purely real and the amplitude factor in Eq. (42) can be rewritten as

rsQðrsjn%Þ
@c
@n%

����
����

� ��1=2

eiðbþp=4Þ ¼ rsQðrsjn%Þ
@c
@n%

� ��1=2

:

It then follows that Rð�Þ
o corresponds to the direct-ray solution given by the upper signs in Eq. (37)

and the indirect-ray solution will correspond to �iRðþÞ
o provided

�rsQðrsjn%Þ
@j
@n%

� ��1=2

¼ rsQðrsjn%Þ
@j
@n%

� ��1=2

e�ip=2:

The above condition removes the ambiguity in the phase of Eq. (37) when the lower signs are
taken. The �p=2 phase shift is a consequence of the indirect ray having passed through the caustic
at r ¼ rd before reaching the far field. The shift is left undetermined in the ray-theory solution
described in Appendix C and, in general, must be obtained through a local analysis near the
caustic [15].
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The above results clearly establish the connection between the asymmetric, high-frequency
solution (21) and the ray-theory solution (37) when n% is purely real. Since the location in the
complex n plane of the saddle point determined by Eq. (43) is not restricted (other than as required
by the method of steepest descents), Eqs. (40) and (42) show how Eq. (37) can be generalized to
complex rays. The technique of applying the method of steepest descents to a classical high-
frequency solution in order to guide the generalization of a ray-theory result to complex rays is
well known [16,17]. Less well known are the methods for developing a complex ray theory when
no classical high-frequency solution is available as, for example, in the case of the uni-directional,
transversely sheared, mean flow considered in Appendix C. A survey of available approaches for
doing just that is given by Chapman et al. [18].

6. Evaluation of ray-theory solution

In arriving at the large-k0 approximation of Rð8Þ
o given by Eq. (42), it was implicitly assumed

that the integrand in Eq. (41) can be analytically continued into the complex n plane so as to allow
integration along a contour that is (at least locally) coincident with the steepest descent paths
intersecting at n%: When n% is complex, care must be taken during the evaluation of Eq. (42)
because rd is then also complex and the integration of Q in the definition of z must be done along a
contour in the complex r plane. For each point along that contour, Q has branch cuts in the n
plane determined by Eq. (39). The r-integration contour must therefore be chosen such that these
branch cuts leave a region of analyticity in the complex n plane that contains both n% and the real
axis. Fig. 13 shows example contours in the complex r plane used for the evaluation of zðrjn%Þ þ
zðrsjn%Þ and zðrjn%Þ � zðrsjn%Þ as well as the corresponding regions of analyticity in the complex n
plane.

Fig. 14 contains a plot of the saddle point n% determined from Eq. (43) as a function of polar
angle y for Dj ¼ 60�; rs ¼ 0:75 and the mean flow given by Eqs. (25) and (27) with MJ ¼ 0:9: The
direct (indirect) ray solutions, which correspond to the upper (lower) signs in Eq. (43), are
indicated by a W ð&Þ: The real and imaginary parts of n% are denoted by the open and closed
symbols respectively.

The figure shows that the complex solutions for n% are confined to the range yt39:5�:
These solutions describe the so-called zone of silence where a significant reduction in the
sound radiated to the far field results from an exponential decay in Ro: Notice that the boundary
of the zone of silence does not coincide with the value yE30:67 where q2

s ¼ 0 (cf. Fig. 2(b)).
Just outside the zone of silence is a range of y where multiple (real) solutions for n% are
found. These multiple solutions occur when different rays reach the same farfield observation
point and give rise to ray-interference effects which can be either constructive or destructive
depending on the relative phases of the solutions. The ray-interference region extends
to yE58 beyond which q2 has no turning points (cf. Fig. 2(b)) and only direct-ray solutions
are found.

Also shown in Fig. 14 is the location of the branch point rsqs along the real n axis. The real part
of n% intersects this curve at yE37:5� with the result that the solution type changes from a
complex direct ray ðyt37:5�Þ to a complex indirect ray ðy\37:5�Þ: The change in solution type is
a consequence of the phase shift in Qðrsjn%Þ that occurs as n% crosses the branch cut issuing from
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rsqs (cf. Fig. 12(a)). The asymptotic approximation (42) remains valid for n% arbitrarily close to
the branch cut (but outside the order k

�2=3
0 neighborhood of rsqs) because the contribution to the

large-k0 behavior of Eq. (41) obtained by deforming the n-integration contour around the branch
point is of higher order.

The purely real solutions for n% are also affected by an encounter with the rsqs curve with the
result that the indirect-ray solution ðyt42�Þ changes to a direct-ray solution ðy\42�Þ: The change
in solution type occurs as rd and rs become coincident and corresponds to the change that occurs
in Eq. (34) as l� js passes through p=2: The approximation of Ro given by Eq. (42) becomes
invalid near this point because n% moves into the order k

�2=3
0 neighborhood of a Qðrsjn%Þ branch

point. The dominant behavior of Eq. (38) is then determined by RðÞ
o rather than Rð�Þ

o or RðþÞ
o : The

appropriate asymptotic behavior of Ro is found by applying the method of steepest descents to
Eq. (38), where the integration is done over the contour CðÞ; with the result that

RðÞ
o B

rsQðrsj*nÞ

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Zðrsj*nÞ

p @ *c
@*n

����
����

" #�1=2

Ai½Zðrsj*nÞ�ei *beik0½Dj*nþzðrj*nÞ�R sin2 y�; ð44Þ

ARTICLE IN PRESS

Fig. 13. Contours in the complex r plane (a, c) and corresponding regions in the complex n plane (b,d). Shaded areas

indicate location of branch cuts of QðrjnÞ along indicated r contours. (a, b) pertain to zðrjn%Þ þ zðrsjn%Þ when q2
s > 0;

(c, d) pertain to zðrjn%Þ � zðrsjn%Þ when q2
so0:
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as k0-N; where

�1
2
po *b � �arg½ði@ *c=@*nÞ1=2�p1

2
p; ð45Þ

and *n is determined by the saddle-point condition

Dj ¼ *cð*nÞ �
Z

N

rd

*n dr

r2Qðrj*nÞ
: ð46Þ

Fig. 14 reveals another change in solution type which also leads to a local breakdown in the
large-k0 approximation given by Eq. (42). This occurs at the zone of silence boundary yE39:5�

ARTICLE IN PRESS

Fig. 14. (a) Saddle points n% for an isothermal jet with rs ¼ 0:75 and Dj ¼ 60�; (b) detail. Open symbols, Re n%;
closed symbols, Im n%; W; direct-ray solution; &; indirect-ray solution; solid line, Re rsqs:

D.W. Wundrow, A. Khavaran / Journal of Sound and Vibration 272 (2004) 793–830818



where the complex indirect-ray saddle point changes into a pair of real indirect-ray solutions. At
the point of bifurcation, n% becomes a saddle point of higher-order for which

@c
@n%

¼ 0; ð47Þ

with the consequence that the right-hand side of Eq. (42) becomes unbounded. Eq. (47) implies a
zero in the Jacobian determinant J introduced in Appendix C and therefore the appearance of a
caustic [3]. The breakdown is restricted to indirect-ray solutions as they are the only ones that
encounter a caustic before reaching the far field.

An expression for @c=@n% can be derived by using Eq. (39) and the defining equation for rd to
show that

@

@n%

n%
r2Qðrjn%Þ

� �
¼

1 þ 2n2
%rP0ðrÞ

r2Qðrjn%Þ
�

@

@r

2n2
%PðrÞ

rQðrjn%Þ

� �
;

@rd

@n%
¼ 2n%rdPðrdÞ;

where PðrÞ � 1=rðr2q2Þ0: Using these results when differentiating Eq. (43) with respect to n% leads
to

@c
@n%

¼
Z

N

rd

8

Z rs

rd

� �
1 þ 2n2

%rP0ðrÞ
r2Qðrjn%Þ

dr7
2n2

%PðrsÞ
rsQðrsjn%Þ

; ð48Þ

where the singularity at r ¼ rd is integrable.
A large-k0 approximation of RðþÞ

o can be constructed when the saddle point n% approaches a
zero of @c=@n% by using the procedure outlined in appendix G of Ref. [19]. The integrand is
expanded about the midpoint %n rather than the saddle point n% when applying the method of
steepest descents where %n is determined by

@

@n
cðnÞ ¼ 0; at n ¼ %n:

Notice that, in view of Eq. (48), %n is independent of Dj: The resulting asymptotic approximation is

RðþÞ
o B

i2pk0

rsQðrsj%nÞ

� �1=2
k0

2

@2c
@%n2

����
����

� ��1=3

Aið%ZÞei %beik0½Dj%nþzðrj%nÞþzðrsj%nÞ�Rsin2 y� ð49Þ

as k0-N; where

�1
3
po %b � �arg½ð@2c=@%n2Þ1=3�p1

3
p; %Z � �k0½cð%nÞ � Dj�

k0

2

@2c
@%n2

����
����

� ��1=3

ei %b;

and cð%nÞ is given by Eq. (43) with n% replaced by %n:
Fig. 15 is a plot of jGo=Goj as a function of polar angle y for Strouhal number St ¼ 2 and

Dj ¼ 60�: The solid line corresponds to the asymmetric high-frequency approximation (21). The
dotted line corresponds to the ray-theory solution given by Eqs. (40) and (43). Results based on
the near-branch-point solution (44) and the near-caustic solution (49) are indicated by the dot-
dashed and dot-dot-dot-dashed lines respectively. The curves were computed using the same mean
flow and source position as Fig. 14.
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Comparing the dotted and solid curves shows that the ray solution is in good agreement with
the asymmetric approximation over most of the y range including yt30� which is well inside the
zone of silence where the rays are complex. The discrepancy near y ¼ 58� is most likely due to the
failure of the ray-theory solution to correctly describe the disappearance of the indirect-ray
contribution (cf. Fig. 14). The ray-theory result could probably be improved by constructing a
local solution that accounts for the higher order zero in Q that emerges for the indirect-ray
solution near y ¼ 58�: A similar explanation likely applies for the discrepancy near y ¼ 150� since
an additional indirect-ray solution (with m% ¼ �1) appears in the range y\150�:

Fig. 15 also shows that the ray solution breaks down at the zone of silence boundary yE39:5�

as expected. It is interesting to note that Eq. (42) remains bounded (although not in particularly
good agreement with the asymmetric approximation) at yE42� where n% equals the branch point
value rsqs because, as can be shown from Eq. (48),

lim
n2
%
-r2

s q2
s

rsQðrsjn%Þ
@c
@n%

¼ 72r2
s q2

sPðrsÞ;

where again the upper (lower) sign corresponds to the direct (indirect) ray solution.
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Fig. 15. jGo=Goj  104 for an isothermal jet with rs ¼ 0:75; Dj ¼ 60� and St ¼ 2: Solid line, asymmetric

approximation; dotted line, ray-theory solution; dot-dashed line, near-branch-point solution; dot-dot-dot-dashed line,

near-caustic solution.
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Comparing the dot-dashed, dot-dot-dot-dashed and solid curves shows that the local solutions
(44) and (49) bring the ray-theory result into closer agreement with the asymmetric approximation
and hence the exact solution in their respective regions of applicability. In the range 35�oyo50�;
the near-caustic solution (dot-dot-dot-dashed line) yields better agreement with the asymmetric
approximation than does the near-branch-point solution. One might then expect that a composite
solution formed from Eqs. (40) and (43) together with the near-caustic solution (49) should
produce good agreement with the asymmetric approximation over the ranges of y and Dj of
interest. However, as Dj decreases, the near-branch-point solution becomes the better
approximation in the vicinity of the zone of silence boundary and a different approach to
constructing a composite ray-theory solution will be taken here.

Fig. 16(a) contains a plot of %y as a function of Dj where %y is defined as the value of the polar
angle y at which the indirect-ray saddle point satisfies both Eq. (43) and (47), i.e., the value at
which n% ¼ %n: The %y curve therefore marks the zone of silence boundary in y–Dj space. As
Dj-0�; %y approaches 30:67� which is the value of y at which q2

s vanishes. As Dj increases, %y also
increases indicating that the zone of silence grows as the azimuthal angle between the farfield
observation point and the source position increases.

Fig. 16(b) shows plots of the indirect-ray saddle point n% (which is equivalent to %n here) and the
location of the branch point rsqs along the real n axis as functions of Dj at the zone of silence
boundary. It is clear from the figure that %n eventually moves into the order k

�2=3
0 neighborhood of

a Qðrsjn%Þ branch point as Dj becomes sufficiently small. When this occurs, the near-caustic
approximation (49) must be reworked in order to account for the presence of both a branch point
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Fig. 16. (a) Polar angle and (b) indirect-ray saddle point evaluated at the zone of silence boundary for an isothermal jet

with rs ¼ 0:75: (b) &; midpoint %n; solid line, Re rsqs:
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and a higher order saddle point. Rather than deriving yet another local approximation for Ro; the
approach taken here is to modify the near-branch-point approximation (44) by shifting the
solution to Eq. (45) as follows:

#n ¼ *n� *njy¼%y þ signð*nÞrsqsjy¼%y:

Thus, #n coincides with the Qðrsjn%Þ branch point when y ¼ %y: If the integrand in Eq. (38) is
expanded about #n rather than *n when the method of steepest descents is applied the following
expression is obtained:

RðÞ
o B right-hand side ofð44Þ½ �  exp i

k0

2

ðDj� *cÞ2

@ *c=@*n

" #
; ð50Þ

as k0-N; where *c is given by Eq. (46) and all occurrences of *n must be replaced by #n in the above
result.

The dot-dashed line in part (b) of Figs. 3–6 corresponds to a composite ray solution for
jGo=Goj at Dj ¼ 30� formed from outer and inner expansions given by Eqs. (40) and (50),
respectively. A multiplicative composite form was used when Zðrsj#nÞ > 0 and an additive form
otherwise [20]. The figures show that the composite ray solution does an adequate job of
extending Eq. (40) through both the branch point and caustic at all St: Apart from the
discrepancies near y ¼ 58� and 150� discussed above, the composite solution is in fairly good
agreement with the asymmetric approximation (and hence the exact result) down to St ¼ 0:5: The
disagreement near y ¼ 58� and 150� tends to spread over a wider y range as St decreases which
supports the conjecture that a local large-k0 solution could improve the ray-theory result in these
regions. It is interesting to note, however, that the composite ray solution gives a better prediction
of the exact result near y ¼ 58� as St decreases which may indicate that the asymmetric
approximation over emphasizes the ray interference effects when St is small. At St ¼ 0:25; the
composite ray solution continues to accurately predict the asymmetric approximation inside the
zone of silence, but, outside the zone of silence, it predicts a more gradual decline in jGo=Goj with
y which puts the ray-theory result in better agreement with the exact solution.

A determination of the level of agreement between the exact and high-frequency asymptotic
Lilley’s equation Green function for more general mean flows would require using the methods of
reference [18] to extend the analysis of Appendix C to complex rays and then supplementing those
results with local solutions of the sort described in Ref. [15] near any caustics or branch points.
Such a program will not be undertaken here. Instead, it may be inferred from the success of the
composite ray solution at predicting the asymmetric approximation that the level of agreement
between the exact and high-frequency asymptotic solutions for more general mean flows would be
similar to that shown in Figs. 3–11 between the exact solution and the asymmetric high-frequency
approximation.

7. Conclusions

It has been shown that, for parallel round jets, the asymmetric high-frequency approximation,
which applies to sources away from the jet axis, provides the best overall prediction of the exact
Lilley’s equation Green function and remains accurate for Strouhal numbers as small as 1/2. The
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quasi-symmetric high-frequency approximation, which uses a near-axis source assumption, was
found to be most successful when applied to the ring-source directivity and gives a good
approximation of the exact ring-source result at all Strouhal numbers considered provided the
polar angle from the downstream axis is sufficiently large. In this range of angles, an equivalence
of the quasi-symmetric and asymmetric ring-source approximations was demonstrated.

The ray-theory solution was shown to be closely connected to the asymmetric high-frequency
approximation and this close association was used to guide a generalization of the ray-theory
result to complex rays. When combined with appropriate local solutions near the caustic and
branch point, the ray-theory solution was found to be in good agreement with the asymmetric
approximation and hence the exact result for the Lilley’s equation Green function. This finding
was used to infer the potential for success of the high-frequency asymptotic Green function for
more general (i.e., non-axisymmetric and/or non-parallel) mean flows.

The numerical results presented here apply to stationary sources embedded in a subsonic
parallel round jet and are restricted to flow situations where Lilley’s equation contains at most one
simple turning point. The generalization to multiple and/or higher-order turning points would
require modifying the WKB analysis given in Appendix A but this is straight-forward and
presents no great difficulty other than algebraic. The only impediment to applying the results of
the present analysis to supersonic flows is the possibility of encountering a zero in the
denominator of Eq. (24) when the source is located such that Ms > 1: This singularity can however
be ‘removed’ with the techniques developed by Ffowcs Williams [21]. Extension to sources
convecting in the mean-flow direction can be made by simply introducing an appropriate Galilean
transform into Eq. (4).

It was noted that development of a uniformly valid high-frequency asymptotic Green function
for more general mean flows would involve extending the ray-theory analysis of Appendix C to
complex rays and then supplementing those results with appropriate local solutions near any
caustics or branch points. The complications associated with complex rays may however be
significantly lessened by simply accounting for mean-flow divergence effects. Durbin [22] notes
that jet spreading tends to eliminate the zone of silence by producing progressively flatter mean-
velocity profiles that are less effective at deflecting radiated sound waves away from the jet axis. In
any event, the ray-theory solution may not lend itself well to implementation in a jet-noise
prediction scheme because the Green function is given in terms of the initial ray direction rather
than the orientation of the farfield observation point. A similar discord between desired and
computed solution forms arises in the exact order-one frequency problem but has recently been
overcome for both axisymmetric [13] and non-axisymmetric [1] mean flows by recasting the
problem in terms of the adjoint Green function. Interchanging the source and observation points
allows the Green function for all source locations in the jet that radiate in a given farfield direction
to be obtained from a single computation. The adjoint Green function formulation may be
similarly helpful in developing a more convenient form for the high-frequency asymptotic solution.

Appendix A. Asymmetric, high-frequency approximation

In this appendix, high-frequency asymptotic solutions for v1 and v2 are constructed using the
azimuthal wavenumber scaling n ¼ Oðk0Þ: The solution forms are strongly dependent on the
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turning points of Eq. (13) which are determined by the zeroes of Q2
n: It follows from Eq. (16) that

Q2
n-

�ðn=k0rÞ2 as r-0;

sin2 y as r-N:

(

Therefore, Eq. (13) always has at least one turning point with the current scaling of n:
For isothermal, subsonic jets with monotonically decreasing Mach number profiles, it can be

shown [6] that Q2
n has at most one simple zero for 0�oyp90�: The situation becomes complicated

for more general jet profiles and for polar angles in the range 90�oyo180� due to the possibility
of multiple and/or higher-order turning points which then depend on the detailed shape of the
mean-flow profiles. In order to keep the analysis as simple as possible, it will be assumed here (as
well as in Appendix B) that Eq. (13) has at most one simple turning point. The present analysis
can, if necessary, be extended to more complicated situations by making some straightforward
modifications to the results given here.

Let rd denote the single n-dependent turning point of Eq. (13), then the general solution

vB

jQnj�1=2ðA�e�ik0zn þ B�eik0znÞ; rd � rck
�2=3
0 ;

*A Aið*ZnÞ þ *B Bið*ZnÞ; jr � rdj ¼ Oðk�2=3
0 Þ;

jQnj
�1=2ðAþeik0zn þ Bþe�ik0znÞ; r � rdck

�2=3
0

8>><
>>: ðA:1Þ

as k0-N; follows from WKB theory [11], where

*Zn � wðrd � rÞ; w � k2
0

d

dr
Q2

n

����
r¼rd

 !1=3

; znðrÞ �
Z r

rd

QnðrÞ dr;

and Ai and Bi denote Airy functions in the notation of Ref. [12]. The constants A7; B7; *A and *B

are related by

2A� ¼
w
pk0

� �1=2

*A ¼ Aþeip=4 þ Bþe�ip=4; ðA:2Þ

B� ¼
w
pk0

� �1=2

*B ¼ Aþe�ip=4 þ Bþeip=4; ðA:3Þ

which ensure matching between the limiting forms in Eq. (A.1).
Applying the outgoing-wave condition (14) to Eq. (A.1) shows that Bþ ¼ 0: The corresponding

solution can then be written as

v1ðrÞBQ�1=2
n ðrÞAþ

1 eik0znðrÞ;

as k0-N; where attention is restricted to the r � rdck
�2=3
0 behavior since that is all that is

required in Eq. (20).
The bounded condition (15) requires B� ¼ 0: In this case, only the value of the corresponding

solution at r ¼ rs appears in Eq. (20). However, the location of the turning point rd relative to rs

varies with both y and n and it is therefore convenient to express the v2 solution in the uniformly
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valid composite form

v2ðrsÞBA�
2 4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZnðrsÞ

p
QnðrsÞ

" #1=2

Ai½ZnðrsÞ�

as k0-N; where

ZnðrÞ � �
3

2
k0znðrÞ

� �2=3

;

with the cube root defined such that Znw0 for r_rd:
Since the Wronskian V is independent of r; the r � rdck

�2=3
0 behavior of v1 and v2 can be used

to show that

V � v1v02 � v01v2B� i2k0Aþ
1 A�

2 eip=4;

as k0-N: Combining this result with the expressions for v1ðrÞ and v2ðrsÞ given above leads to

v1ðrÞv2ðrsÞ
V

B
ip
k2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZnðrsÞ

p
QnðrsÞQnðrÞ

" #1=2

Ai½ZnðrsÞ�eik0znðrÞ; ðA:4Þ

as k0-N:

Appendix B. Quasi-symmetric, high-frequency approximation

In this appendix, the high-frequency solutions to Eq. (13) are constructed using the azimuthal
wavenumber scaling n ¼ Oð1Þ: Eqs. (16) and(17) show that k2

0Q2
n and S then become of equal

order as r becomes sufficiently small. The disordering of Eq. (13) is dealt with, as in Ref. [2], by
introducing an inner region where

%r � k0r ¼ Oð1Þ:

The corresponding equation for v is given to the required order of accuracy by

%r2d
2v

d%r2
þ ½%r2q2ð0Þ � n2 þ 1

4
�v ¼ 0;

which has the general solution

vB
ffiffi
%r

p
%AJnð%xÞ þ %BHð1Þ

n ð%xÞ
� �

; ðB:1Þ

as k0-N; where %x � qð0Þ%r and Jn and Hð1Þ
n denote the Bessel and Hankel functions of the first

kind respectively.
When r is order one, the solution to Eq. (13) is determined, to the required order of accuracy,

by

v00 þ k2
0q2v ¼ 0; ðB:2Þ

which can, of course, be solved using WKB theory [11]. The particular form of the solution
depends on the number and nature of the turning points determined by the zeroes of q2: As in
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Appendix A, it will be assumed here, for simplicity, that the v equation has at most one simple
turning point.

First, suppose that Eq. (B.2) has a turning point at r ¼ rsc1=k0 where the notation rs is used
to distinguish the zeroes of q2 from the n-dependent zeroes of Q2

n: The solution to Eq. (B.2) is then
given by Eqs. (A.1), (A.2) and (A.3) with n set equal to zero. Matching that result with Eq. (B.1)
as %r-Oðk0Þ (noting that %x is purely imaginary) requiresffiffiffiffiffiffi

2p
p

A� ¼ e�iðk0xs�np=2Þ %A;
ffiffiffiffiffiffi
2p

p
B� ¼ �i2eiðk0xs�np=2Þ %B;

where

xðrÞ �
Z r

0

qðrÞ dr;

and a subscript s is used to indicate evaluation at r ¼ rs:
Applying the outgoing-wave condition (14) shows that Bþ ¼ 0 from which follows:

v1ðrÞBAþ
1

ip
2

k0x
q

� �1=2

Hð1Þ
n ðk0xÞe�iðk0xs�np=2Þ ðB:3Þ

as k0-N; where attention is restricted to the r � rsck
�2=3
0 behavior since that is all that is

required in Eq. (20) and the Hankel function has been introduced (without loss of generality) in
order to facilitate the application of Graf’s addition theorem [12] in Section 3.

The bounded condition (15) requires %B ¼ 0 and the corresponding expression for v2ðrsÞ depends
on the location of rs relative to rs: Reasoning that the quasi-symmetric approximation is only
appropriate when rs{1; Balsa [2] employed the simplifying assumption that rs � rsck

�2=3
0 ; i.e.,

that the source is always closer to the jet axis than the turning point. Using this assumption, v2ðrsÞ
can be expressed as

v2ðrsÞB %A2
k0xs

qs

� �1=2

Jnðk0xsÞ ðB:4Þ

as k0-N: It should be noted that for any given value of rs there will be, in general, a range of y
for which rs > rs and, consequently, for which the above expression is invalid. The implications of
this failure are discussed in Section 4 where comparisons with the order-one frequency solution
for the reduced Green function are given.

Unlike the situation encountered in Appendix A, it is possible, with the present scaling of n; that
the equation governing v has no turning points. When this is the case, the solution to Eq. (B.2) is
given as

vBq�1=2ðAþeik0z0 þ Bþe�ik0z0Þ;

as k0-N: Matching with Eq. (B.1) as %r-Oðk0Þ (noting that %x is now purely real) requiresffiffiffiffiffiffiffi
i2p

p
Aþ ¼ ð %A þ 2 %BÞe�inp=2;

ffiffiffiffiffiffiffi
i2p

p
Bþ ¼ i %Aeinp=2:

Expressions for v1ðrÞ and v2ðrsÞ can be derived by applying the boundary conditions (14) and(15)
as done above. It turns out that the final expressions are in exact agreement with those given by
Eqs. (B.3) and (B.4) if the convention that rs ¼ 0 when q2 has no zeroes is adopted.
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The r-independent Wronskian V can be evaluated using the r � rsck
�2=3
0 behaviors of v1 and

v2 and is given, for the one- and no-turning point solutions, by

V � v1v02 � v01v2B� ik0
i2

p

� �1=2

Aþ
1
%A2e

�iðk0xs�np=2Þ;

as k0-N: Combining this result with the expressions for v1ðrÞ and v2ðrsÞ given above leads to

v1ðrÞv2ðrsÞ
V

B
ip
2

xsx
qsq

� �1=2

Hð1Þ
n ðk0xÞJnðk0xsÞ; ðB:5Þ

as k0-N:

Appendix C. Ray-theory approximation

In this appendix, the high-frequency solution to Eq. (4) obtained from ray theory is reviewed.
Following the matched asymptotic analysis given by Durbin [4], the solution to Eq. (4) for the
uni-directional, transversely sheared mean flow (1) is

GoðxjxsÞBFðxÞAðxjxsÞeik0SðxjxsÞ; ðC:1Þ

as k0-N; where the Eikonal S satisfies

F2 � jsj2 ¼ 0; s � =S; ðC:2Þ

the amplitude function A satisfies

= . sþ i
M

a
F

� �
A2

� �
¼ 0; ðC:3Þ

and here F � ð1 � Mi . sÞ=a:
The first order partial-differential equation (C.2) is reduced to the coupled system of ordinary

differential equations,

’x ¼ sþ i
M

a
F; ’s ¼ 1

2
=>ðF2Þ; ’S ¼ s . ’x; ðC:4Þ

along the rays xðtÞ by the method of characteristics, where t is a parameter that varies
continuously along the ray, a dot indicates differentiation with respect to t and => is the gradient
operator in the y–z plane. Eq. (C.4) must be solved subject to initial conditions,

x ¼ xs; ’x ¼ ssfcos m; sin m cos l; sin m sin lg; S ¼ 0 ðC:5Þ

at t ¼ 0; where the free parameters m and l determine the initial ray direction relative to the
Cartesian co-ordinate system fx; y; zg; and it follows from Eqs. (C.2) and (C.4) that

s�2
s ¼ a2

s � M2
s sin

2 m: ðC:6Þ

The amplitude function A is found by solving Eq. (C.3) subject to matching with a near-source
solution. It follows from the analysis of Ref. [4] that

AðxjxsÞ ¼
1

4pasFs

s3
s sin m

J

� �1=2

; ðC:7Þ
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where

J �
@ðx; y; zÞ
@ðt; m; lÞ

ðC:8Þ

is the Jacobian determinant.
When attention is restricted to the far field, solution (C.1) can be simplified by noting that the

rays xðtÞ become straight lines in the absence of a mean flow. Thus, in the far field, the
approximation

xBxs þ RNfcos yN; sin yN cosf
N
; sin yNsin f

N
g ðC:9Þ

can be introduced, where RN is the distance between the farfield observation point and the source
position and yN and f

N
are the farfield polar and azimuthal angles measured from axes passing

through the source position and aligned with the x and y directions respectively. It is important to
note that f

N
; yN and RN are not equal to j; y and R of Sections 2 and 3 but approach these

quantities in the far field, i.e.

f
N
Bjþ

rs

R
cos y sin Djþ?; ðC:10Þ

yNByþ
rs

R
cos yð1 � cosDjÞ þ?; ðC:11Þ

RNBR þ rssin yð1 � cosDjÞ þ? ðC:12Þ

as R-N:
It follows from Eqs. (C.2) and (C.4) that ’RN ¼ 1 which can then be used when inserting

Eq. (C.9) into Eq. (C.8) to obtain

JBR2
N

sin yN
@ðyN;f

N
Þ

@ðm; lÞ
; ðC:13Þ

as RN-N: Since Eq. (C.4) implies that the quantity i . s is constant along each ray, Eqs. (C.5)
and (C.9) show that

i . s ¼
a2

sss cos m� Ms

a2
s � M2

s

¼ cos yN; ðC:14Þ

and furthermore, in view of Eq. (C.6), yN ¼ yNðmÞ and

sin yN
dyN
dm

¼ a2
ss

3
s sin m: ðC:15Þ

An additional consequence of Eq. (C.14) is

s2
s sin2 m ¼ F2

s � cos2 yN; ðC:16Þ

which follows directly from the Eikonal equation (C.2). The Eikonal itself has the farfield
behavior

SBRN þ S>ðxjxsÞ; ðC:17Þ
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as RN-N; where

S> �
Z t

0

ðs . ’x> � sin2 yNÞ dt

remains bounded as RN-N and x> ¼ fy; zg denotes the ray vector in the y–z plane.
Substituting Eqs. (C.15) into Eq. (C.13) and the result into Eq. (C.7) yields the farfield

approximation for A which when substituted, together with Eq. (C.17), into Eq. (C.1) leads to
Eqs. (18) and (19), where now

RoB
@j
@l

� ��1=2

eik0ðS>þRN�RÞ; ðC:18Þ

as k0; R-N; and where use has been made of the farfield relations (C.10)–(C.12).
For the purposes of the present investigation, it is convenient to restate Eqs. (C.4) and (C.5) in

terms of the cylindrical co-ordinates fx; r;jg of Section 2. The ray equations in the y–z plane are
then

ð’rÞ2 ¼ F2 � cos2 yN � sðjÞ
2

; r ’j ¼ sðjÞ;

’ðrsðjÞÞ ¼ 1
2
@ðF2Þ=@j; ’S> ¼ rsðjÞ ’jþ ð’rÞ2 � sin2 yN;

)
ðC:19Þ

which must be solved subject to

r ¼ rs; j ¼ js; sðjÞ ¼ sssin m sinðl� jsÞ; S> ¼ 0

at t ¼ 0; where rsðjÞ � @S=@j:
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